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Motions of a single vortex filament in a background flow are studied by numerical 
simulation of a set of model equations. The model, which in essence is due to Hama, 
treats the self-interaction of the filament through the so-called ‘ localized-induction 
approximation ’ (LIA). Interaction with the prescribed background field is treated 
by simply advecting the filament appropriately. We are particularly interested in 
elucidating the evolution of sinuous vortices such as the ‘wiggle’ seen by Breidenthal 
in the transition to three-dimensionality in the mixing layer. The model studied 
embodies two of the simplest ingredients that  must enter into any dynamical 
explanation : induction and advection. For finite-amplitude phenomena we make 
contact with the theory of solitons on strong vortices developed by Betchov and 
Hasimoto. I n  a shear, solitons cannot exist, but solitary waves can, and their 
interactions with the shear are found to be key ingredients for an understanding of 
the behaviour of the vortex filament. When sheared, a soliton seems to act as a 
‘nucleation site’ for the generation of a family of waves. Computed sequences are 
shown that display a remarkable morphological similarity to  flow-visualization 
studies. The present application of fully nonlinear dynamics to  a model presents an 
attractive alternative to the extrapolations from linearized stability theory applied 
to the full equations that have so far constituted the theoretical basis for under- 
standing the experimental results. 

1. Introduction 
In  a series of papers written in the early 1960s Hama and collaborators investigated 

the deformation of a single, strong vortex filament idealized as a space curve using 
a certain asymptotic theory for the self-induced motion of the vortex now commonly 
referred to as the ‘localized-induction approximation ’i (see e.g. Hama 1963 ; Arms 
& Hama 1965). LIA captures the leading-order behaviour of the Biot-Savart 
induction law, which is believed to govern the large-scale bending and flexing of a 
concentrated vortex. Several years later Hasimoto (1972) showed that the LIA 
equations, when written in terms of the local geometric quantities curvature and 
torsion as first suggested by Betchov (1965), are equivalent under a certain 
transformation to the cubic Schrodinger equation in one space dimension. It follows 
from this observation and the work of Zakharov & Shabat (1972) that  any 
perturbation of a concentrated vortex filament should evolve into one or more 
solitons, which for this case are localized helical twists of the vortex core. This 
important prediction seems to have been largely ignored for a decade following 
Hasimoto’s (1972) work. 

Recent experiments (Hopfinger & Browand 1982; Hopfinger, Browand & Gagne 

f Henceforth abbreviated to LIA. 
16-2 
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FIGURE 1.  Two photographs of a tornado near Braman, Oklahoma (1  1 May 1978) showing a distinct 
large-amplitude localized twist of the vortex core. Photographs by T. Goggin, Newkirk Herald 
Journal (reproduced with permission). 

1982 ; Maxworthy, Hopfinger & Redekopp 1985) have provided considerable evidence 
that helical-twist solitons or closely related solitary waves do indeed occur on 
concentrated vortices in ordinary fluids, although coupling to  the degrees of freedom 
of the vortex core frequently complicates the simple idealized picture presented by 
LIA theory. Rotating superfluid helium seems a prime candidate for application of 
these ideas, since the vortices have cross-sections of atomic dimensions (cf. Donnelly 
1967), but such vortices are difficult to  visualize and the existence of solitary twists 
must be inferred by indirect means. Concentrated vortices in ordinary fluids, e.g. the 
vortices shed from the body and wings of aircraft or from the hulls of ships and from 
various types of propellers, frequently appear to support one or more standing or 
propagating twist waves. Pictures and cin6 films of tornadoes and waterspouts in the 
decaying stage, when the vortex is thin and ropelike, commonly reveal systems of 
transverse waves propagating up or down (see e.g. figures 13 and 14 of Golden & 
Pureell (1978) or figure 4 of Peterson et al. (1979)). The clearest instance of a localized 
twist on a tornado that we have secn is reproduced as figure 1. These are pictures 
of the tornado at Braman, Oklahoma (11 May 1978) taken by T. Goggin of the 
Newkirk Herald Journal (and published previously by Wilson, Pearson & Ostby 1979). 
We suggest that the disturbance seen here is an example of a wave very closely related 
to the Hasimoto soliton. 

The phenomenology just described has inspired experimental and theoretical 
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investigations aimed at understanding the modifications to LIA predictions that must 
arise from effects associated with finite vortex cores, fluid viscosity, axial flow etc. 
(Maxworthy et al. 1985; Leibovich & Ma 1983). The tentative conclusion of these 
investigations is that solitary waves do exist on concentrated vortices in ordinary 
fluids, but that at small amplitudes they are modified relative to  the LIA predictions 
by the finite core. 

The present paper is a report on some simple numerical experiments that  we have 
been conducting in an attempt to relate the elegant theory of Betchov (1965) and 
Hasimoto (1972) and in particular the concept of solitons on vortices to certain 
aspects of the phenomenology seen in laboratory shear flows. We have returned to 
a model, introduced already by Hama (1963), in which the vortex filament moving 
itself through LIA is also subjected to a background shear flow. For this model we 
can show through numerical calculations of the initial-value problem that solitons 
will act as ‘nucleation sites’ for a system of transverse, dispersive waves along the 
vortex. When a shear-layer ‘background’ is used the resulting deformation of the 
vortex bears a striking resemblance to detailed flow-visualization studies by Breiden- 
thal (1978, 1979) of the onset of three-dimensional instability on a two-dimensional 
vortex ‘roller’ in a mixing layer. I n  effect what we have documented is a mechanism 
through which localized twists (or similar perturbations) on an essentially two- 
dimensional vortex can develop into an extended transverse wave on the vortex. This 
mechanism should be observable in many flow situations, of which the mixing layer 
is the most readily available. Our results on a vortex filament in a background shear 
flow appear in $2.4. 

We emphasize that these results pertain to a particular model. And, while we have 
no doubts that  they are correct for the model, there remains the important and 
non-trivial issue of how the model relates to  the full three-dimensional Euler 
equation. One problem is that the background or mean flow that is relevant in a shear 
layer also has vorticity, whereas the only evolving vorticity in the model is associated 
with the concentrated filament. This question is taken up in $2.1, where, after a brief 
review of LIA, we present some simple order-of-magnitude estimates suggesting that 
the terms retained in Hama’s (1963) model describe a possible balance in the full 
dynamics. 

We describe the numerical discretization procedure employed in $2.2, and in $2.3 
we show several simulations of two-soliton collisions on an unsheared filament. 
Although such collision processes are in principle just transcriptions of solutions to 
the cubic Schrodinger equation, they are of interest both from the standpoint of recent 
laboratory experiments and from the #andpoint of the formal mathematical theory 
of the cubic Schrodinger equation. Summary, conclusions and possible extensions of 
the work reported are collected in $3. 

2. Numerical experiments on vortex-filament motion 
In  this section we describe the theoretical ideas behind our model for vortex- 

filament motion, its numerical implementation and the main results that  we have 
obtained so far. 

2.1. Localized-induction approximation 

It is well known that, if a vortex filament is idealized as a space curve, the BiotAavart 
integral which gives the velocity field surrounding i t  diverges if the ‘field point’ a t  
which the velocity is desired coincides with a ‘source point ’ on the filament. Hence, 
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to deduce the motion of the filament under its self-induced velocity, an asymptotic 
analysis, in which the space curve is replaced by a family of ever thinner tubes, is 
required. 

It is also well known (Arms & Hama 1965; Betchov 1965; Batchelor 1967) that 
the leading term to emerge from such an analysis is a local term, and that by using 
Helmholtz’ theorem for the motion of the vortex one obtains the following velocity 
law, 

(1) - = C r ~ 6 ,  

for each point x on the filament. Here Tis the circulation of the vortex, K is the local 
curvature and 6 is the local unit binormal. The non-dimensional constant C is the 
asymptotic expansion parameter (essentially the logarithm of the ratio of filament 
radius of curvature to tube cross-sectional radius), and is thus ‘large ’ but of unknown 
magnitude. For a single filament the actual value of C does not matter for most 
purposes, since C can be absorbed into a rescaling of the time variable, i.e. we set 

ax 
at 

e = crt ( 2  ) 

(where 0 has the physical dimensions of area), and then 

ax 
ae - = ~ 6 .  (3) 

Note that, since the velocity vector for points on the vortex filament is always 
perpendicular to the filament, a vortex evolving under LIA does not stretch itself. 

It is clear that the approximations implied by (1) or (3) ignore several aspects of 
the dynamics of real concentrated vortices. Most obviously, the deformation of the 
vortex core is not represented. This problem has received considerable attention, 
particularly in purely two-dimensional flows (for reviews see e.g. Zabusky 1981 ; Aref 
1983). Viscous diffusion and the possible effects of axial flow are also ignored. 
Moreover, the approximation is given by a local term and thus will not be valid when 
two distant portions of the filament approach each other closely. In  spite of all these 
shortcomings (which were already realized in the 1960s), LIA solutions seem to 
provide useful clues to the large-scale bending and flexing of a concentrated vortex. 
There are indeed several examples of simple solutions to the LIA which are known 
to have close counterparts in the full theory of vortex tubes evolving under the 
three-dimensional Euler equation. These examples include the circular vortex ring, 
the elliptical vortex ring (Dhanak & Bernardinis 1981) and the helical vortex 
(Hardin 1982). For a comprehensive study of steady-state vortex-filament configur- 
ations and their stability within the framework of LIA see the papers by Kida (1981, 
1982). 

As first shown by Betchov (1965), i t  is illuminating to combine (3) with the 
Frenet-Serret formulae of differential geometry (Eisenhart 1960). After a straight- 
forward calculation we then obtain the following coupled system of partial differential 
equations for the filament curvature K and torsion 7 : 

t + ( K 7 ) ’  = - K ’ 7 ,  ‘f- --7’+&’ = 0. (4% b )  (: 1 
Here a dot denotes a partial derivative with respect to 0, ( Z ) ,  and a prime a derivative 
with respect to arclength along the curve. Equations (4) are usually referred to as 
Betchov’s intrinsic equations. 
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Historically some seven years passed between Betchov's (1965) derivation of (4) 
and the realization by Hasimoto (1972) that, if one defined a 'wave function' 

$(s,O) = K(s,O)exp i 7(s',O ds' , {.r > I  
where K ,  7 evolve according to  (4), then 

( 5 )  

Recently Spiegel (1980) has discussed in general terms the existence of a 'Madelung 
transformation' such as ( 5 )  connecting a wave equation of Schrodinger type (6) to 
a set of evolution equations of the form (4). Lamb (1977) has considered other 
generalizations of the connection between a wave equation and motions of a space 
curve exemplified by Hasimoto's (1  972) transformation. 

The reduction of (4) to (6) in spite of its formal elegance is not terribly useful for 
numerical calculations since it is in general cumbersome and inefficient to reconstruct 
the space curve a t  every time step from the values of K and T obtained through solving 
(6) for ~. However, since (6) is integrable (Zakharov & Shabat 1972), this reduction 
does show that vortex filaments moving according to LIA support solitons (which 
a more detailed investigation reveals are localized helical twists with a speed of 
propagation proportional to the torsion). This property is useful in testing a code 
constructed on the basis of ( l ) ,  as we shall see in $2.3. 

As discussed in Q 1 ,  we are particularly interested in a modification of (1)  to  a model 
suitable for following the evolution of a vortex filament embedded in a shear flow. 
Thus, following Hama (1963), we shall consider the equation of motion 

where Uext is a prescribed flow. I n  general Uext will lead to stretching of the filament. 
I n  our applications in $2.4 we shall set 

Uext(x, y,z) = U,, tanh - f, (d 
where i is a unit vector in the x-direction and U,,, A are constant parameters. This 
flow represents the 'mean' or 'background' flow in a free shear layer. 

In  order to understand the nature of the approximations implicit in this model i t  
is illuminating to compare i t  with what one would obtain by formally decomposing 
the velocity and vorticity in the three-dimensional Euler equation into a sum of two 
contributions. Thus we consider the vorticity equation 

(9) 
a 
at 
---W+U'VW = W'VU 

and let u = u, +u,, o = a, +o,, where oi = V x ui, j = 1,2.  We substitute this into 
(9) to  obtain 

a a 
- o1 + - 0, + u, ' vo, + U , ' V W ,  + U,'VO, + U,'VO, 
at at 

= w ,  ' vu, + oz'VU, + O,'VU, + O,'VU,. 
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We now assume that the field subscripted 2, the 'background', is itself a (steady) 
solution of (9). Then the second and fourth terms on the left-hand side cancel the 
second term on the right, and we are left with 

a 
-0, + u, - vo, - o;Vu, + U2'V0, = W,'VU2 + 0;Vu1 - u;Vo2. 
at 

The model in (7) is designed to  treat the terms on the left-hand side of this equation 
and ignore those on the right. (We show below that this is a reasonable way to proceed 
by providing order-of-magnitude estimates for all terms.) On the left-hand side the 
first three terms are modelled by LIA (which, in fact, says that the stretching 
contributed by the term o;Vu, vanishes). The fourth term describes the advection 
by the background. On the right-hand side the second and third terms describe the 
action of the vortex-filament velocity field on the background vorticity. These terms 
are ignored. Finally the term o,*VU,, which one might intuitively have assumed 
would dominate the stretching and reorientation of filament vorticity, is ignored and 
the background is reduced to  the role of an extraneous advecting agent. 

I n  order to provide some legitimacy to the model (7) (other than historical 
precedent) consider instead of a vortex filament a slender vortex tube of diameter 
S (and circulation r). Using (8) we may then estimate the neglected terms as follows: 

On the other hand, a similar estimate would give 

for the advection term being retained. According to these estimates, the relative 
magnitudes of neglected to retained terms are 

both of which are very small when 6 4 A ,  i.e. when the diameter of the vortex is 
negligible compared with the spatial scale of the background flow field. Note that 
so long as u, can be considered linear in y, i.e. U, = (Uo y/A, 0 , O )  (which is true for 
most of the calculations reported on in $2.4), we have u;Vw, = 0 identically. 

These estimates suggest that  (7) is a reasonable model of (9), written in terms of 
Lagrangian coordinates for the vortex filament, valid, roughly speaking, to order S / A  . 
One must, however, keep in mind that emerging transverse oscillations of the vortex 
will introduce other lengthscales into the problem, and so the estimates above will 
not be uniformly valid in time. The notion that a background field of scale A acts 
on a small 'eddy' of scale S 4 A only by advection is familiar from qualitative 
arguments used in the 'cascade dynamics' of fully turbulent flows. 

The calculations reported in $2.4 are predicated on (7) being a valid model (for some 
finite time) of the large-scale motions of a vortex filament in an  essentially permanent 
environment. It seems clear that  experimental situations in which this is true can be 
constructed. However, there are also various shear flows in which such a model seems 
applicable. The early stages of a mixing layer, for example, appear suitable (although 
one might be troubled by the asymptotics S 4 A ) .  When used for such flows the model 
in (7) is akin to 'mean-field' or 'effective-medium' theories so popular in many areas 
of physical science. 
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2.2 .  Algorithm for numerical computations 

Let the filament be represented by a string of node points uniformly spaced in 
arclength, x, = x(nAS), where n = 0, _+ 1, ... and As is the arclength spacing. Using 
standard centred differences 

with a truncation error  AS)^). The resulting numerical approximation to  (7), viz 

preserves the following two important properties of LIA : 

ax a2x ax ax 
at as at as2  

-0 ,  -.-- - 0  _._-  

(in the absence of an external field Vex,) in the sense that 

dx, (x,+l-x,-l) = 0, - - (x,+1-2x,+x,-l) = 0. -. dx, 
dt dt 

In  the computations reported on below we have used (10) with C r  = 1. Periodic 
boundary conditions are imposed in the z-direction such that with N node points 
xNfl = xl, yNtl = yl, z ~ + ~  = z,+L, where L is our spanwise spatial window. Time- 
stepping was performed using the predictor-corrector routine STEP due to Shampine 
& Gordon (1975). This routine chooses its own order and stepsize accoring to the 
values of given error-control parameters. Typically the time integrations proceeded 
using a third- or fourth-order algorithm. The results shown here were all generated 
using the CRAY-1 computer a t  the National Center for Atmospheric Research 
(NCAR). Preliminary runs were performed on a VAX-11/780 computer using single 
precision. 

When an external velocity field is imposed, the filament stretches, As increases, 
and the node points cease to be uniformly spaced. I n  order to retain a uniform 
magnitude of the truncation error along the filament, i t  was therefore necessary to 
develop a redistributing subroutine that would place new node points uniformly on 
the deformed space curve. This was done in a straightforward way using the package 
CURV from the software collection NSSL distributed by the Scientific Computing 
Division a t  NCAR. CURV contains routines to perform cubic-spline fits under tension 
to  a given set of data points. As the calculation progressed we would monitor the 
distances between adjacent node points and, in particular, the average and root- 
mean-square deviation of these quantities. When the r.m.s. deviation exceeded a 
certain small percentage of the mean (usually 1 %), redistributing would be invoked 
and time-stepping reinitiated. This happened readily and repeatedly when a shear 
was acting on the filament; but never occurred when running ‘free ’ filaments under 
pure LTA, in accord with the fact that  LIA does not lead to vortex stretching. Since, 
owing to the local interactions, the computational effort per time step of the model 
considered is proportional to N ,  the total number of node points, i t  was found in the 
present investigation to  be expedient to run with a large number of node points 
(typically 8&300) instead of having schemes for node insertion during a run. 

Several detailed quantitative tests were performed to assess how many node points 
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are necessary to resolve a curved filament adequately. For example, if we consider 
a vortex ring of radius R, LIA gives a ‘theoretical ’ velocity of translation V,, = CT/R. 
The discretization in the numerical scheme ( i O ) ,  on the other hand, gives a velocity 

cr x v,,, = R cos 7&. 

This formula, which, of course, agrees with the velocity calculated by our code, shows 
that using 15 node points one commits a 2 Yo error in the velocity, and using 30 node 
points the error is less than 1 Yo. Several tests of this type were performed for the 
standardequilibrium shapes - ring, helix andsmall-amplitudesine wave (see Batchelor 
1967) - and used to provide a rough guide in setting the number of node points for 
a run (see also $2.3). 

2.3. Soliton collisions 

As additional checks on the algorithm and code, we computed several sequences 
showing the collision of two solitons. These runs provide a more comprehensive test, 
since we are following time-dependent evolution rather than steady-state motion. We 
have both computed head-on collisions and head-tail collisions where a fast (high- 
torsion) soliton catches up to, collides with and then leaves behind a slower 
(low-torsion) soliton. While doing these runs we continually monitored the curvature 
and torsion of the filament (as a function of arclength). The smoothness of these two 
quantities gives a very direct impression of the ‘ quality ’ of a run. And, indeed, one 
can produce runs with very similar sequences of space curves but of widely varying 
‘quality’. In this way monitoring the curvature and torsion has allowed us to 
‘fine tune’ the appropriate settings of important numerical parameters such as the 
relative accuracy of the time-stepping and the number of node points. 

Figure 2 shows plan views (i.e. projections on a (2, %)-plane) of a head-on collision 
between two opposite but otherwise identical, relatively high-torsion solitons 
(torsions are & 10, with the unit of length taken as the distance L between periodic 
boundaries). A complicated sequence of events unfolds as the solitons pass through 
one another. There is a reflection symmetry between the left and right portions of 
the filament in this run (but the entire filament is being evolved in time). In figure 3 
we show corresponding pictures of the filament in a perspective view. The two 
different views of essentially identical solitons provided by figure 3(a)  should be 
compared to the two views of the twist seen in figure 1. Figure 4 shows stages in the 
head-on collision of two different solitons in perspective view. Note that the solitons 
are highly localized entities and that their interaction appears as a short-range effect. 
Distant portions of the filament and the section of the filament between the solitons 
remain rectilinear. 

In figures 5 and 6 analogous sequences of plan and perspective view, real-space plots 
are displayed for the head-tail collision of one soliton (of torsion +2) with another 
(of torsion +lo). This process also is very complex, with the low-torsion soliton 
winding its way along the filament while the high-torsion soliton comes straight 
towards it. In both figures 2 (or 3) and 5 (or 6) we have checked in detail the similarity 
of initial and final states (curvature and torsion) except for phase shifts. These results 
give us confidence that our code can be used for relatively long-time finite- 
amplitude simulations. 

Soliton collisions have been attempted experimentally by Hopfinger et al. (1982) 
and by Maxworthy et al. (1985). In the former paper internal degrees of freedom were 
invariably excited and a ‘ ballooning ’ of the vortex core would appear (reminiscent 
of a vortex breakdown). Such effects are of course inaccessible to the simple model 
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FIGURE 2. Plan view of the collision of opposite but otherwise identical solitons on a free filament 
evolving under LIA. Frames are not uniformly spaced in time, but were selected to show maximum 
detail of the collision. Time increases from (a )  to ( 1 ) .  

under study here. In the latter study more controlled soliton (or solitary-wave) 
collisions could be produced. Experimental amplitudes are currently of the order of 
the core radius, and the dynamics of the core enters in an essential way. It is not 
clear at the present time how much vortex stretching goes on when the solitary waves 
that are observed experimentally collide. We stress that LIA and hence figures 2-6 
pertain to the case of no vortex stretching. In a recent paper Levi, Sym & 
Wojciechowski (1983) calculate two-soliton interactions analytically and sketch 
a collision with two solitons very disparate in size. This is a non-trivial task, since 
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FIGURE 3. Perspective views corresponding to the plan-view frames in figure 2. 

FIGURE 4. Perspective views of a head-on collision sequence between two different solitons. The 
high-torsion soliton starts a t  left, the low-torsion soliton a t  right. Time increases from (a )  to (i). 

the direct procedure of obtaining the curve shape from curvature and torsion 
‘generally. . .requires the solution of some Riccati equation with coefficients built 
from [ K ]  and 7 ’  (Levi et al. 1983). 

2.4. Dispersion of solitons in a shear flow 
Leaving the realm of analytically accessible results, we now consider a filament with 
solitons on it acted on by the shear of (8). The vortex is placed along the z-axis and 
given a perturbation in the form of one or more solitons of moderate amplitude. The 
objective is to  describe the evolution of the filament from this initial condition. 

The motivation for introducing solitons as the initial perturbation is twofold. First, 
from the formal theory briefly summarized in $2.1 i t  follows that any initial 
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FIGURE 5. Plan views of the head-tail collision between a high-torsion soliton (starting a t  left) and 
a low-torsion soliton. Time increases from (a)  to (p), and frames were again selected to show 
maximum detail. 

perturbation of a free filament will produce one or more solitons. Thus, since solitons 
are the ‘natural ’ excitations of a filament, it  is reasonable to introduce them as initial 
data in a numerical experiment. Secondly the experiment by Hopfinger & Browand 
(1982) has shown that, when one has a strong vortex ‘anchored’ a t  one end in a 
turbulent flow, the oscillations in this turbulence are sufficient under certain 
circumstances to trigger soliton (or solitary-wave) disturbances on the filament. Now, 
in an experimental mixing-layer apparatus the two-dimensional vortex ‘rollers ’ that 
evolve have both ends imbedded in turbulent boundary layers on the walls of the 
apparatus. It is then natural to assume that here also solitons (or solitary waves) will 
be triggered and will propagate across the span of the apparatus.? Thus it seemed 
that the mixing layer might provide a useful area of application for the ideas being 
pursued. Incidentally, this scenario suggests that the onset of three-dimensionality 

t This scenario was first suggested to one of us (H.A) in conversations with J. Haritonidis, but 
had already occurred to Browand and Hopfinger (private communication), who have in fact 
searched for the solitons in the mixing layer, so far without observing any. It is also possible that 
small ‘kinks’ are introduced on the vortex ‘rollers’ by upstream disturbances in the wind tunnel. 
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FIGURE 7. Dispersion of a high-torsion soliton by a background shear flow. Plan-view projections 
onto the (2, x)-plane. Along the abscissa 0 < z < 2, along the ordinate -0.2 < z < 0.2 for all frames. 
Time increases from (a )  to (f). The values of parameters U,, and A ,  (8), were U,, = 4000, A = 5. The 
torsion of the initial soliton was 36. 

in mixing layers may be facility dependent and also that applying suction to the 
boundary layers on the sidewalls will delay the onset of three-dimensional motion. 

Figure 7 shows a sequence of events in the stretching of a filament with a single 
high-torsion soliton on it by the shear flow (8). All views are projections on the 
(2, z)-plane, i.e. correspond to a spanwise view in a conventional mixing-layer 
apparatus. It is immediately apparent that  the soliton starts emitting a train of 
waves on the filament, and that these waves are being continually stretched by the 
background advection. This point is amplified in figure 8, where the filament 
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FIGURE 8. Plots of instantaneous filament curvature vs. arclength for the frames in figure 7. The 
curvature scale (ordinate) is the same in all frames. However, owing to stretching, the total 
arclength increases, and the scale along the abscissa is adjusted accordingly (from 0 < s < 2.2 in 
( a )  to 0 < s < 3.4 in (f)). 

curvature is plotted ws. arclength. The initial single bump (figure 8 a )  corresponding 
to the soliton is seen to become surrounded by and eventually yield to a succession 
of bumps corresponding to  the dispersing waves. At late times the waves take on a 
finger-like appearance which is reminiscent of the pictures produced by Breidenthal 
(1978, 1979) of the ‘wiggle’ instability. In figure 9 an analogous disintegration of a 
low-torsion soliton is displayed. The intermediate stages are rather different, the final 
‘finger’ pattern, however, is very similar (except for scale as discussed following (1 1)). 
The curvature signal (not shown) is not nearly as clear as for the high-torsion case 
in figures 7 and 8. 
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FIGURE 9. 
the one in 

Dispersion of a low-torsion soliton by a background shear flow. This run is similar to 
figure 7, the (2, %)-window shown is ihe sameind  so is the value of A .  However, here 

U,, = 1000 and the torsion of the initial soliton was only 1.  

Figures 7-9 correspond to a periodic array of identical solitons (because of the 
periodic boundary condition in 2). In figure 10 we show a more ‘realistic’ case where 
the initial condition consists of three randomly chosen solitonst with different values 
of the torsion (and thus also different directions of propagation). Again we see the 
emergence of several waves, which we identify as being ‘radiated’ by the solitons 
(compare the results in $2.3, where the sections of filament between solitons remained 
unperturbed). As the waves are stretched out by the shear a rather characteristic 

t It is not difficult to develop a subroutine that will initialize any (small) number of solitons 
of different widths and torsions selected by a random-number generator. Since the amplitude in 
a soliton decays to zero rapidly on both sides of the soliton there is no difficulty in placing different 
solitons on contiguous sections of the filament. 
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FIGURE 10. Plan views of the dispersion of three ‘random’ solitons by a background shear. Along 
the abscissa 0 < z < 3, along the ordinate -0.5 6 z < 0.5 in all frames. Time increases from (a) 
to (f). Parameters were ZTo = 800, A = 5 and (from left to right) the initial solitons had torsions 
-8.2, 12.7 and - 10.1 respectively. Values of 0 ,  (2), are ( a )  0, ( b )  0.010, ( c )  0.021, (d )  0.036, ( e )  0.048, 
(f) 0.065. 

pattern emerges. Figure 11 gives a perspective view of this pattern corresponding to 
the projection shown in figure 10 (f ). The resulting wavetrain has a certain well-defined 
periodicity with some imperfection. Apart from this modulation of spatial frequency, 
which is indeed also seen in Breidenthal’s (1978, 1979) experimental pictures, there 
is clearly some amplitude modulation (which seems somewhat more pronounced than 
what is observed experimentally).t It should be stressed that in figures 7, 9 and 10 

t A different but qualitatively similar result to figure 10 is reproduced in the review article by 
Laufer (1983). 
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FIGURE 1 1. A perspective view of the filament shown in figure 10 (f) .  
Scales along axes of 2, y and z are now the same. 

remnants of the solitons may occasionally be seen during late stages of evolution (see 
e.g. figure 9f). It seems intuitively clear that vestiges of the helical twists put in 
initially should remain, since the imposed shear obviously contains no velocity 
components to ‘uncoil’ the filament, and the LIA terms in the total velocity tend 
to simply propagate the twist. 

Our experiences with waves emanating from solitons suggest that  the wavelength 
A of these waves is rather insensitive to the amplitude or torsion of the solitons. If 
one assumes that A depends only on the circulation r of the vortex and on the slope 
U o / A  of the shear-flow profile, i t  follows by simple dimensional reasoning that 

A - (TA/U,)?.  (11) 

We have checked this relation by varying the slope U , / A  of the profile by a factor 
of 4 (i) and observing, to  good accuracy, a change in wavelength A by a factor o f f  
(2). The filaments shown in figures 7,  9 and 10 were in essence always restricted to  
the vicinity of J: = y = 0 and only the linear portion of the tanh in (8) was of 
significance. The differences in wavelength among the sequences in figures 7, 9 and 
10 can all be explained in terms of (11) .  

For the results shown in figure 10 we have used U, = 800, A = 5 (and CT = 1 as 
mentioned earlier). This may seem to be a very large value of U,,, but we have 
observed that making U,, smaller simply allows the solitons to  pass many times 
through the computational domain. Finally, when the effects of the shear begin to 
appear, the solitons have already evolved for so long that time-stepping errors are 
beginning to degrade the computation. I n  this sense we do not look upon U, as a 
parameter that must be above some threshold for wave generation to take place. 
Small values of U,, simply appear to slow down the wave-formation process. As 
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already mentioned, varying U,  (from 250 t o  4000) produced no qualitative changes 
and only altered the wavelength of the emerging waves in accordance with (11) .  

The wave-generation mechanism illustrated in figures 7-10 seems to  us to  be of 
intrinsic interest, since i t  produces an extended wavetrain with a definite (albeit 
modulated) spatial frequency starting from a completely localized finite-amplitude 
initial perturbation. We are not aware of other mechanisms that readily achieve this, 
Conventional attempts a t  theoretical explanation of the Breidenthal ‘wiggle ’ typically 
start with initial perturbations in the form of extended waves and use ideas of 
linearized stability theory to suggest the finite-amplitude behaviour (for this approach 
see Pierrehumbert & Widnall 1982; Robinson & Saffman 1982, 1983; Ho & Huerre 
1984). 

It is clearly desirable to  place this soliton wave ‘radiation’ mechanism, proposed 
here on the basis of numerical experiments and ( 1  l ) ,  on firmer theoretical ground. 
Since the waves start out by being of very small amplitude, this might be possible 
by calculating the infinitesimal instability of a soliton in a linear shear. The equations 
of motion, however, are no longer simply the LIA equations. We have developed what 
we believe are suitable equations, but so far we have not succeeded in carrying out 
the required elucidating calculation. There is clearly a close connection between our 
observations and recent theoretical work on other soliton-bearing equations subjected 
to  forcing (see e.g. McLaughlin & Scott 1978). The main obstacle in making direct 
contact with that work is the technical issue of rewriting the shear flow (8) as a 
functiona1,of the wave function in the Schrodinger equation (6). It is clear that  since 
the background flow depends on spatial coordinates, whereas the wave function 
depends on intrinsic geometrical properties of the filament, any expression of the shear 
in terms of the wave function must involve rather complicated integral operators. 

We stress that  the interplay between induction and advection is essential in 
producing a final state such as figure l O ( j )  from the initial state figure lO(a). 
Advection alone could never lead to  the delocalization along the filament that is seen 
in these figures. I n  this sense the mechanism suggested here is dynamical (as opposed 
to kinematical). We should also note that although similar extended wave patterns 
will emerge for localized initial perturbations that are not assemblies of solitons, the 
contrast between the results in $2.3 and those of this subsection is particularly clear 
for such initial conditions. 

The main unsatisfactory aspect of the calculation is that  the value of C is not fixed 
a priori. This means that, although we can display a sequence of geometrical shapes 
of the vortex filament, we have no objective way of assigning times to the frames 
in figure 10. We have recorded the values of the variable 8, (2), in the captions to 
the figure, and the reader is of course a t  liberty to convert them to ‘physical time’ 
using an assumed value for C. 

3. Summary, conclusions, extensions 
We have displayed results of numerical experiments on vortex-filament motion using 
a conceptually and computationally simple model based on LIA with and without 
a background advecting flow. The main virtue of this model, due originally to Hama 
(1963), is that it reduces to the integrable cubic Schrodinger equation for a free 
filament. Our main conclusions are as follows. 

1 .  Phenomenologically soliton (or solitary-wave) excitations play a role in the 
evolution of thin, strong vortex filaments both in the laboratory and in Nature. 

2 .  Such excitations can be simulated using the LIA. Some of the complex patterns 
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FIGURE 12. Perspective views of the evolution of a vortex filament in a boundary-layer background 
flow as it is swept downstream. The filament was initially given a small-amplitude, localized, 
one-sided deflection (frame (a)). Various secondary ‘wiggles’ appear, possibly resembling the vortex 
structure in a boundary-layer ‘spot ’. 

of soliton interactions have been elucidated. The idealization of a vortex filament as 
a space curve implies, in particular, that  modes of excitation that involve the degrees 
of freedom of the vortex core, such as axisymmetric waves, are not accommodated 
by the model. 

3. When subjected to a background shear, LIA solitons disperse into a family of 
waves. This mechanism, which produces an extended wavetrain from an initially 
localized finite-amplitude perturbation of the vortex filament, yields filament shapes 
with a qualitative resemblance to the ‘wiggly ’ vortices visualized by Breidenthal 
(1978, 1979) in the mixing layer. The mean wavelength expected within such a 
dispersive wavetrain is given by (11) .  

It is tempting to extend the modelling from free shear flows to boundary-layer 
flows, as was indeed Hama’s (1963) original motivation. The simplest way to do this 
is to  replace Uext in (7)  by a Blasius profile. However, the question of how to enforce 
the boundary condition of a rigid wall arises. So long as the filament does not 
approach the wall very closely, i t  is inconsistent to include an image vortex, since 
the basic assumption of LIA is that  local induction dominates over any other 
velocities induced by remote sections of the filament. When such a model is pursued, 
however, one all too frequently finds that parts of the filament do indeed approach 
and ultimately pass through the wall after some time, and the remainder of the 
calculation becomes meaningless. Nevertheless, we have performed several calcula- 
tions of this kind in an attempt to model wiggly vortices in boundary-layer flows (such 
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as the so called ‘horshoe’ or ‘hairpin’ or ‘A’  vortices). And although the model is 
physically unsatisfactory for several reasons, we conclude by showing one set of rather 
typical results because they are highly suggestive. 

Figure 12 shows the results of a simulation in which an initially straight filament 
in a model? boundary-layer velocity field was given a small localized perturbation 
(figure i2a)  as if by a protrusion in the bounding wall. The combination of transverse 
perturbation and its attendant LIA velocity and the background shear leads to a 
dispersive wavetrain by the mechanism discussed in $2.4 (except that now the 
background flow is not antisymmetric in y). As the filament evolves, the localized 
perturbation is seen to  develop into a concentrated wave packet that we conjecture 
may resemble the vorticity structure in a boundary-layer spot. The calculation shown 
in figure 12 is physically consistent. However, in figure 12(d) the rearward portion 
of the filament closest to  the bounding wall has in fact just touched the wall, and 
in the next time step will dip below y = 0. 

We submit that simple models such as those studied here, however simplistic they 
may appear from the point of view of the complete equations of motion, are useful 
in suggesting patterns of evolution in fully nonlinear flow regimes. We believe that 
model calculations can be used as a valuable guide for more comprehensive numerical 
experiments. We hope that model results such as these will suggest analytical 
methods for understanding vortex flows starting from the fundamental equations. 
This is, of course, the ultimate goal. 

We are indebted to Dr J. H. Golden for sending us pictures and cine films of 
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MEA81-16910 to Brown University, by the Allied Foundation and by the Exxon 
Education Foundation. Use of the VAX-11/780 facility within the Division of 
Engineering a t  Brown and a grant of computer resources by the Scientific Computing 
Division a t  NCAR are gratefully acknowledged. NCAR is sponsored by NSF. 
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